3.1.92 \(\int \frac {x (a+b \sec ^{-1}(c x))}{d+e x^2} \, dx\) [92]

3.1.92.1 Optimal result
3.1.92.2 Mathematica [A] (verified)
3.1.92.3 Rubi [A] (verified)
3.1.92.4 Maple [C] (warning: unable to verify)
3.1.92.5 Fricas [F]
3.1.92.6 Sympy [F]
3.1.92.7 Maxima [F]
3.1.92.8 Giac [F(-2)]
3.1.92.9 Mupad [F(-1)]

3.1.92.1 Optimal result

Integrand size = 19, antiderivative size = 487 \[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )}{e}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {i b \operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )}{2 e} \]

output
-(a+b*arcsec(c*x))*ln(1+(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e+1/2*(a+b*arcsec 
(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^ 
(1/2)))/e+1/2*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^ 
(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e+1/2*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*( 
1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e+1/2*(a+b*arcse 
c(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e) 
^(1/2)))/e+1/2*I*b*polylog(2,-(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e-1/2*I*b*p 
olylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1 
/2)))/e-1/2*I*b*polylog(2,c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1 
/2)-(c^2*d+e)^(1/2)))/e-1/2*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2)) 
*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e-1/2*I*b*polylog(2,c*(1/c/x+I*(1-1 
/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e
 
3.1.92.2 Mathematica [A] (verified)

Time = 0.51 (sec) , antiderivative size = 891, normalized size of antiderivative = 1.83 \[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\frac {4 i b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+4 i b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+b \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+b \sec ^{-1}(c x) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+b \sec ^{-1}(c x) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+b \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \sec ^{-1}(c x) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )+a \log \left (d+e x^2\right )-i b \operatorname {PolyLog}\left (2,-\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-i b \operatorname {PolyLog}\left (2,\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-i b \operatorname {PolyLog}\left (2,-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-i b \operatorname {PolyLog}\left (2,\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+i b \operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )}{2 e} \]

input
Integrate[(x*(a + b*ArcSec[c*x]))/(d + e*x^2),x]
 
output
((4*I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c 
*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] + (4*I)*b*ArcSin[ 
Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e]) 
*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] + b*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] 
- Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 2*b*ArcSin[Sqrt[1 + ( 
I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^ 
(I*ArcSec[c*x]))/(c*Sqrt[d])] + b*ArcSec[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[ 
c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 2*b*ArcSin[Sqrt[1 - (I*Sqrt[ 
e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*Arc 
Sec[c*x]))/(c*Sqrt[d])] + b*ArcSec[c*x]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + 
 e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 2*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c* 
Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x] 
))/(c*Sqrt[d])] + b*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^( 
I*ArcSec[c*x]))/(c*Sqrt[d])] - 2*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d]) 
]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sq 
rt[d])] - 2*b*ArcSec[c*x]*Log[1 + E^((2*I)*ArcSec[c*x])] + a*Log[d + e*x^2 
] - I*b*PolyLog[2, ((-I)*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/( 
c*Sqrt[d])] - I*b*PolyLog[2, (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c 
*x]))/(c*Sqrt[d])] - I*b*PolyLog[2, ((-I)*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I 
*ArcSec[c*x]))/(c*Sqrt[d])] - I*b*PolyLog[2, (I*(Sqrt[e] + Sqrt[c^2*d +...
 
3.1.92.3 Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 547, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {5763, 5233, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5763

\(\displaystyle -\int \frac {x \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{\frac {d}{x^2}+e}d\frac {1}{x}\)

\(\Big \downarrow \) 5233

\(\displaystyle -\int \left (\frac {x \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right ) x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e}+\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e}-\frac {\log \left (1+e^{2 i \arccos \left (\frac {1}{c x}\right )}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e}+\frac {i b \operatorname {PolyLog}\left (2,-e^{2 i \arccos \left (\frac {1}{c x}\right )}\right )}{2 e}\)

input
Int[(x*(a + b*ArcSec[c*x]))/(d + e*x^2),x]
 
output
((a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[ 
e] - Sqrt[c^2*d + e])])/(2*e) + ((a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[- 
d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e) + ((a + b*Ar 
cCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[ 
c^2*d + e])])/(2*e) + ((a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*Ar 
cCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e) - ((a + b*ArcCos[1/(c* 
x)])*Log[1 + E^((2*I)*ArcCos[1/(c*x)])])/e - ((I/2)*b*PolyLog[2, -((c*Sqrt 
[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/e - ((I/2)*b*Po 
lyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/ 
e - ((I/2)*b*PolyLog[2, -((c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sq 
rt[c^2*d + e]))])/e - ((I/2)*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)] 
))/(Sqrt[e] + Sqrt[c^2*d + e])])/e + ((I/2)*b*PolyLog[2, -E^((2*I)*ArcCos[ 
1/(c*x)])])/e
 

3.1.92.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5233
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5763
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
3.1.92.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.71 (sec) , antiderivative size = 446, normalized size of antiderivative = 0.92

method result size
parts \(\frac {a \ln \left (e \,x^{2}+d \right )}{2 e}-\frac {i b \,c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}-\frac {b \,\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {b \,\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i b \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i b \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {i b \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}\) \(446\)
derivativedivides \(\frac {\frac {a \,c^{2} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e}+b \,c^{2} \left (-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}\right )}{c^{2}}\) \(460\)
default \(\frac {\frac {a \,c^{2} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e}+b \,c^{2} \left (-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}\right )}{c^{2}}\) \(460\)

input
int(x*(a+b*arcsec(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
1/2*a/e*ln(e*x^2+d)-1/4*I*b*c^2*d/e*sum((_R1^2+1)/(_R1^2*c^2*d+c^2*d+2*e)* 
(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x- 
I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2* 
d))-b/e*arcsec(c*x)*ln(1+I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))-b/e*arcsec(c*x)* 
ln(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))+I*b/e*dilog(1+I*(1/c/x+I*(1-1/c^2/x^ 
2)^(1/2)))+I*b/e*dilog(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))-1/4*I*b/e*sum((_ 
R1^2*c^2*d+c^2*d+4*e)/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x 
-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)) 
,_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))
 
3.1.92.5 Fricas [F]

\[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x}{e x^{2} + d} \,d x } \]

input
integrate(x*(a+b*arcsec(c*x))/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*x*arcsec(c*x) + a*x)/(e*x^2 + d), x)
 
3.1.92.6 Sympy [F]

\[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int \frac {x \left (a + b \operatorname {asec}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \]

input
integrate(x*(a+b*asec(c*x))/(e*x**2+d),x)
 
output
Integral(x*(a + b*asec(c*x))/(d + e*x**2), x)
 
3.1.92.7 Maxima [F]

\[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x}{e x^{2} + d} \,d x } \]

input
integrate(x*(a+b*arcsec(c*x))/(e*x^2+d),x, algorithm="maxima")
 
output
b*integrate(x*arctan(sqrt(c*x + 1)*sqrt(c*x - 1))/(e*x^2 + d), x) + 1/2*a* 
log(e*x^2 + d)/e
 
3.1.92.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(x*(a+b*arcsec(c*x))/(e*x^2+d),x, algorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 
3.1.92.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{e\,x^2+d} \,d x \]

input
int((x*(a + b*acos(1/(c*x))))/(d + e*x^2),x)
 
output
int((x*(a + b*acos(1/(c*x))))/(d + e*x^2), x)